

FIAT 600e

RED ELECTRIC FWD AUTOMATIC

Sustainability Rating

2025

96%

Clean
Air

9.6 /10

Energy
Efficiency

9.5 /10

Greenhouse
Gases

10.0 /10

Driving Experience

Consumption
& Range

 GOOD

Cold Winter
Performance

 ADEQUATE

Charging
Capability

 ADEQUATE

Our verdict

The electric FIAT 600e achieves remarkable results in the sustainability assessment.

The small EV impresses with high powertrain efficiency and its life cycle impact benefits from its low mass and moderate battery size.

- › The FIAT 600e has no tailpipe emissions and low tyre, brake, and production- and fuel supply-related emissions due to its compact size and efficiency.
- › It features a low-consuming powertrain and efficient heating, maintaining impressive energy performance even in cold and highway conditions.
- › It achieves top marks for greenhouse gas emissions, showing low life cycle climate impact thanks to its small size, smart design and high overall efficiency.

While it can be expected that a car with a relatively low mass and moderate battery capacity will score in the non-usage life cycle phases, the FIAT 600e surprised with a very low electricity consumption in all tests. The measurement figures are notably better than those of many other vehicles of the same class.

Disclaimer

Think before you print

Clean Air

9.6 /10

Comments

With no tailpipe emissions and scoring highly for tyre and brake abrasion, the FIAT is awarded excellent results in this part of the investigations. Due to the compact dimensions, lightweight and low consumption, the emissions associated to production processes and supply of energy are also low.

Exhaust emissions

Exhaust pollutant emissions are produced from combustion engines. Although current emission legislation is very strict, this type of emission directly affects air quality, and not all vehicles perform equally well. [Read more](#)

GOOD

10.0 /10

In laboratory

Green NCAP performs a wide range of tests on cars in the laboratory. This is the best way to ensure controlled conditions and guarantee that all cars are tested in the same way, making their results comparable. [Read more](#)

GOOD

10.0 /10

	NMHC	NO _x	NH ₃	CO	PN	PM	Score
Legal test (WLTP)	●	●	●	●	●	●	8.0 /8
Warm weather	●	●	●	●	●	●	10.0 /10
Highway	●	●	●	●	●	●	10.0 /10
Winter cold start	●	●	●	●	●	●	10.0 /10
Winter warm start	●	●	●	●	●	●	10.0 /10

On road

An on-road driving test, using portable emissions measuring equipment complements Green NCAP's laboratory tests. [Read more](#)

GOOD

10.0 /10

	NMHC	NO _x	NH ₃	CO	PN	PM	Score
Real-world mixed drive	●	●	●	●	●	●	10.0 /10
Short city trip	●	●	●	●	●	●	10.0 /10
Congestion	●	●	●	●	●	●	2.0 /2

good

adequate

marginal

weak

poor

not applicable

Clean Air

9.6 /10

Non-exhaust emissions

Driving a vehicle also produces emissions different from those of the exhaust pipe. Green NCAP evaluates vehicle properties that contribute to tyre and brake abrasion.

ADEQUATE

9.0 /10

Tyre wear

Tyre abrasion releases small particles during driving, and some vehicle properties have major impact on it. Heavier vehicles, wheel alignment causing increased slip angle, and aggressive acceleration responses all increase tyre wear and particle emissions. [Read more](#)

ADEQUATE

5.2 /6

Influence of mass

2.2 /3

Wheel alignment

1.0 /1

Accelerator response

2.0 /2

Brake wear

GOOD

5.6 /6

Brake dust, produced by friction brakes, can be mitigated through filters, enclosed brake systems (like drums), or by reducing friction brake use with regenerative braking in electrified vehicles. Containment keeps dust inside the system, while recuperation lowers brake wear. However, heavier vehicles still generate more brake abrasion due to their greater stopping demands. [Read more](#)

Brake dust mitigation

0.0 /4

Brake dust containment

0.0 /6

Recuperative braking - warm test

5.6 /6

good

adequate

marginal

weak

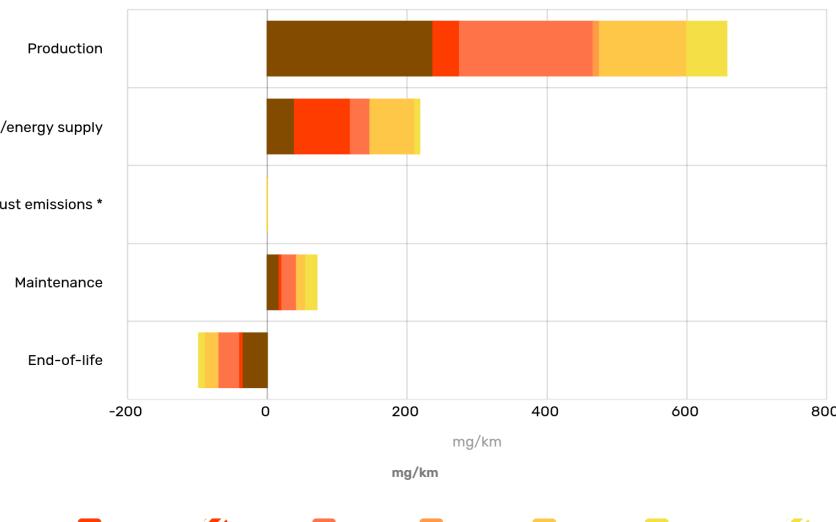
poor

not applicable

Clean Air

9.6 /10

Additional Life Cycle Assessment information


Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime, 'from cradle to grave'. In this section, pollutants are estimated in the various stages of a vehicle's life other than use. The chart also displays the measured emissions related to usage, which are taken as an average from the tests and are scored separately in the 'Exhaust emissions' part above. The end-of-life approach uses results in negative values because the benefit of materials recovery and recycling exceeds the effort of obtaining and processing virgin raw materials.

ADEQUATE

8.8 /10

Pollutants

Most of the vehicle exhaust pollutant species are also emitted in others life cycle phases. These are health- and nature-damaging compounds, the amount of which should be reduced as well.

* Exhaust emissions are not contributing to the score in Additional Life Cycle Assessment information because they are scored in the Exhaust emissions section above

good

adequate

marginal

weak

poor

not applicable

Energy Efficiency

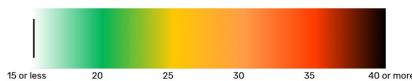
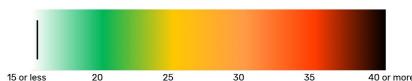
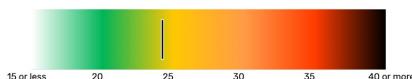
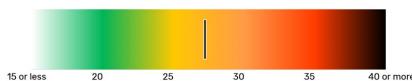
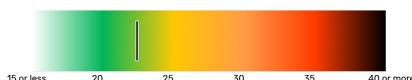
9.5 /10

Comments

The 600e is equipped with a low-consuming powertrain and an efficient heating system, so that its consumption figures impress even in the challenging highway cycle and in the -7°C cold weather sequence.

Energy demand

GOOD






9.5 /10

Propulsion energy consumption in laboratory

GOOD

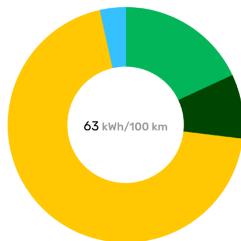
9.8 /10

The vehicle's measured consumption figures are displayed in the bar chart. The colour scheme positions the values relative to low and high figures in a typical range. The ranges are different for combustion engine and pure electric vehicles.

Legal test (WLTP)**15.1** kWh/100 km**Warm weather****15.4** kWh/100 km**Highway****24.2** kWh/100 km**Winter cold start****27.2** kWh/100 km**Winter warm start****22.4** kWh/100 km**good****adequate****marginal****weak****poor****not applicable**

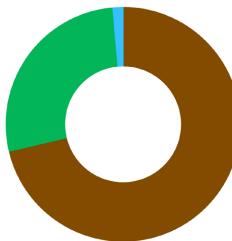
Energy Efficiency

9.5 /10


Additional Life Cycle Assessment information

GOOD

9.6 /10


Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime 'from cradle to grave'. In this section, the total vehicle life cycle primary energy demand is displayed. The scoring does not consider the direct propulsion energy use, because it is scored separately in the 'Propulsion energy consumption in laboratory'.

Total LCA energy consumption

- Production & recycling 18.1%
- Battery production 8.8%
- Fuel/energy supply * 69.6%
- Maintenance 3.5%

Energy source share in total LCA consumption

- Fossil 71.3%
- Renewable 27.3%
- Other 1.4%

Direct propulsion energy share is not shown, it is included in 'Fuel/energy supply'.

Rolling resistance

GOOD

9.3 /10

Rated here is the vehicle's resistance to movement at low speeds. Different factors have an impact on it, but the most significant one is mass.

good

adequate

marginal

weak

poor

not applicable

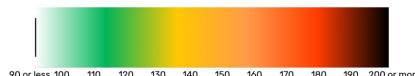
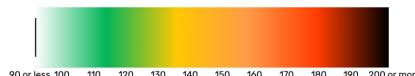
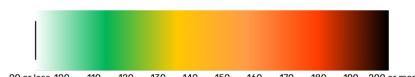
Greenhouse Gases

10.0 /10

Comments

Greenhouse gases is the top category of this small and efficient urban SUV. It easily gathered full points, demonstrating very low life cycle impact on the climate, thanks to adequate sizing and Stellantis engineers' efforts for increasing efficiency, which pay off.

Exhaust GHG emissions




Combustion of conventional fuels releases greenhouse gases at the vehicle's tailpipe. The most significant of these gases are the emissions of CO₂. Green NCAP's assessment considers methane (CH₄) and laughing gas (N₂O) as well. Together, these are counted with their global warming potential to a sum known as CO₂ equivalent.

GOOD

10.0 /10

In laboratory

Green NCAP performs a wide range of tests on cars in the laboratory. This is the best way to ensure controlled conditions and guarantee that all cars are tested in the same way, making their results comparable. [Read more](#)

Legal test (WLTP)**0.0** g CO₂-eq./km**Warm weather****0.0** g CO₂-eq./km**Highway****0.0** g CO₂-eq./km**Winter cold start****0.0** g CO₂-eq./km**Winter warm start****0.0** g CO₂-eq./km

good

adequate

marginal

weak

poor

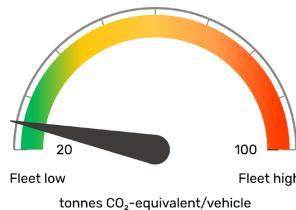
not applicable

Greenhouse Gases

10.0 /10

Additional Life Cycle Assessment information

Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime, 'from cradle to grave'. In this section, the total vehicle life cycle greenhouse gas emissions are displayed.


Adequate

7.3 /10

Total LCA GHG emissions

105
g CO₂-eq./km

- Production & recycling 33.4%
- Battery production 18.3%
- Tailpipe emissions * 0.0%
- Fuel/energy supply 42.1%
- Maintenance 6.2%

Vehicle Life Cycle average emissions **25** (+/-)
(best **22** | worst **29**)

* The scoring does not consider the direct exhaust GHG emissions at the tailpipe, because they are scored separately in 'Exhaust GHG emissions' above.

good

adequate

marginal

weak

poor

not applicable

Driving Experience

Consumption & Range

● GOOD

Cold Winter Performance

● ADEQUATE

Charging Capability

● ADEQUATE

Green NCAP Comment

The FIAT 600e shows that high sustainability scoring does not necessarily come at the cost of usability. The car generally shows adequate to good performance in the tested categories and represents its class very well.

- › The small electric SUV shines with low consumption values in different tests, resulting in acceptable driving ranges. Drivers can trust the consumption figures shown on the display, keeping in mind that they only reflect the energy amount withdrawn from the battery. The amount needed to charge it is naturally higher.
- › The heating performance of the car in -7°C cold start conditions is impressively fast. In the rear footwell it would take a bit longer to reach comfortable temperatures. The fact that the temperature at the non-occupied rear seat did not increase as for the occupied one suggests that the vehicle might be able to actively provide comfort only to the passengers present in the car, smartly saving potentially wasted energy.
- › Both the standard home AC charging and the fast DC charging performance are adequate. The car does not provide any kind of bidirectional charging.

Consumption & Range

GOOD

Estimated actual consumption

What consumption can be expected in real world conditions?

In-laboratory measured consumption values are only partially representative of real-world use. Green NCAP's estimates aim at providing more realistic figures, which are based on measured results, modified by correction factors.

Conditions	Urban	Rural	Highway	Mixed	
Warm weather	14.7	15.7	19.5	16.4	kWh/100 km
Cold Winter	28.5	20.1	25.3	24.8	kWh/100 km

Driving range

ADEQUATE

What driving range can be expected in real world conditions?

Of special importance to consumers is the real-world driving range of electric vehicles. Green NCAP estimates this based on measured data, modified by correction factors.

Conditions	Urban	Rural	Highway	Mixed	
Warm weather	380	355	287	340	km
Cold Winter	195	277	220	225	km

Accuracy of display

GOOD

Is the consumption figure on the display correct?

good

adequate

poor

not applicable

Cold Winter Performance

ADEQUATE

Driving range benefit of pre-warming

ADEQUATE

How much further can you drive in winter, if the car is pre-warmed?

A cold vehicle has increased energy consumption at the start of its trip, mostly due to the cabin heating demand. Pre-warming the car while it is plugged, when possible, can significantly benefit its driving range in cold weather conditions. Green NCAP's winter tests are performed at -7°C.

Type	Driving Range Benefit	Result
Urban trip	+100 km	
Mixed trip	+44 km	

Cabin heating

GOOD

Does the vehicle get warm quickly in winter?

This indicates the time needed to reach 16°C in seconds at different positions in the cabin after the cold vehicle has been started at -7°C ambient temperature.

	Front	Rear
Head area	192 s	251 s
Footwell	315 s	

Rear left footwell target temperature was not reached. The vehicle possibly recognised the empty seat and optimised energy use. Rear right footwell reached 16°C in 510 seconds.

good

adequate

poor

not applicable

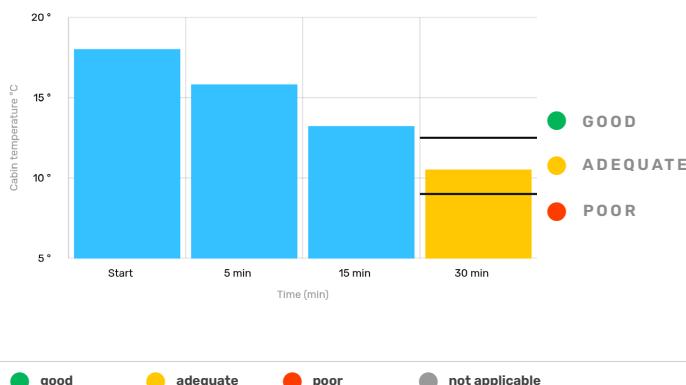
Cold Winter Performance

ADEQUATE

Additional heating functions

What functions can be used to improve heating comfort?

Unlike a combustion car, which usually uses the engine's waste heat to provide warmth to the cabin, in electric vehicles, the energy needed comes from the battery. Therefore, there is a trade-off between thermal comfort and energy consumption. Some additional heating functions can deliver good thermal comfort performance at lower energy use compared to heating up the entire cabin. If they can be scheduled or remotely activated before a trip, while the vehicle is still plugged, both comfort and driving range can be notably improved.


	Y/N	Fitment
Heat pump	✓	Standard
Seating heating front	✓	Standard
Seating heating rear	✗	
Steering wheel heating	✗	
Scheduled pre-heating of seats	✗	
Scheduled steering wheel pre-heating	✗	
Scheduled cabin air pre-heating	✓	Standard
Smart cabin heating management	✓	Unknown

Cabin thermal insulation

ADEQUATE

How well does the cabin maintain its temperature?

Assessed here is the average cabin temperature drop after 30 minutes, starting from 18°C when the outside temperature is -7°C and the vehicle is inactive.

Charging Capabilities

ADEQUATE

Battery pre-conditioning

Does the vehicle have the ability to optimize the battery temperature for fast charging?

Fast charging is quicker when the battery temperature is in a certain range, and many vehicles possess the function to actively prepare for a coming fast charging event. Most use the charger destination in the navigational system to control the process, and some would offer a manual activation function.

	Manual	Automatic
Battery pre-conditioning		

Fast charging

ADEQUATE

Green NCAP's fast charging test verifies the vehicle's ability to recharge fast, which is crucial at long trips or tight schedules. Although constantly improving, not all vehicles offer the same capabilities.

Charging time

How quickly can the battery charge?

Time (min)	Battery charge (%)
0	0
6	10
12	25
18	45
24	65
30	80
36	88
42	92
48	95
54	97
60	98
78	99

Time (min)

10% battery charge | 80% battery charge

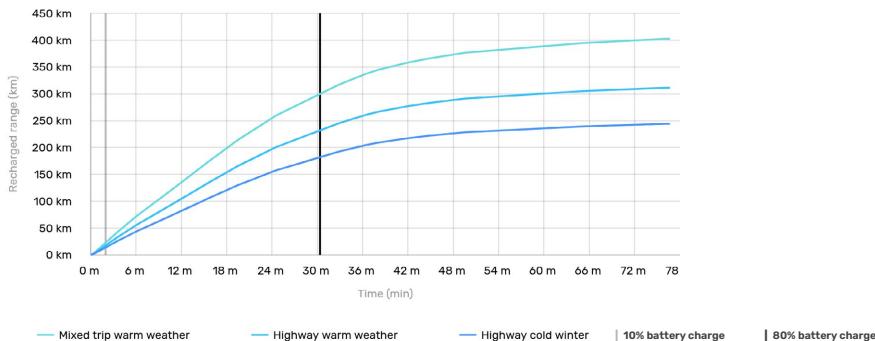
good

adequate

poor

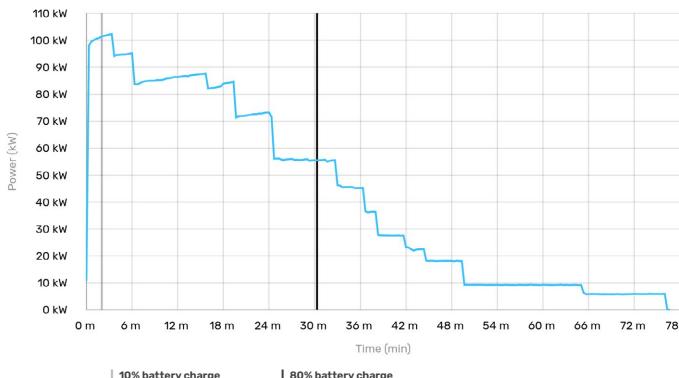
not applicable

Charging Capabilities


ADEQUATE

Fast charging

Green NCAP's fast charging test verifies the vehicle's ability to recharge fast, which is crucial at long trips or tight schedules. Although constantly improving, not all vehicles offer the same capabilities.


Recharged range gain per charging time

How long do you need to fast charge to drive a certain distance?

Charging power

How quickly does energy flow into the battery, depending on its charge level?

good

adequate

poor

not applicable

Charging Capabilities

ADEQUATE

Home charging efficiency

Is charging at home efficiently utilizing the energy withdrawn from the grid?

The assessed efficiency value is the grid-to-battery-output efficiency, which describes what share of the energy taken from the electricity grid is available for the vehicle to use for propulsion and other auxiliary functions. The value encompasses not only the charger efficiency but considers several other losses as well.

Home charging efficiency

87%

Maximum home charging power

11.0 kW Standard

Bidirectional charging

POOR

How capable is the vehicle of supplying energy from its battery to other devices or systems?

Bi-directional charging is available in some vehicles and is gaining increasing popularity. It comes with different power and functionality levels. However, battery usage for purposes additional to regular vehicle driving and charging might be disadvantageous for its durability and manufacturers might introduce limitations to protect it.

Power output

Not available

Compatibility

Vehicle-to-Load (V2L)

The inlet or the interior socket can provide AC power through an electrical domestic socket.

Vehicle-to-Household (V2H)

The vehicle can provide power to a household through a charger.

Vehicle-to-Grid (V2G)

The vehicle can return power to the grid.

Grid integration

Basic

No integration (just a socket for a stand-alone load). No scheduling option. Very basic visualisation.

Limited

Energy management system through the vehicle app (timers availability and power monitoring). Dedicated interface in the car, with mobile app monitoring.

Advanced

Advanced settings available such as tariff and consumption control, linked to distributor energy prices. Advanced real time energy flow visualization. AI powered suggestions for optimal usage.

good

adequate

poor

not applicable

Specifications

Vehicle class

Small SUV

System power/torque

115 kW / 260 Nm

Engine size

n.a.

Declared consumption

15.1 kWh/100 km

Declared driving range

Overall 409 km

City 604 km

Declared CO₂

n.a.

Declared battery capacity

Usable (net) 51.0 kWh

Installed (gross) 54.0 kWh

Mass

1,523 kg

Heating concept

Waste heat & PTC & heat pump

Tyres

215/65 R16

Emissions class

AX

Tested car

ZFANFBA50PJ00xxxx

Publication date

09 2025

